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a Bayes selection procedure. The empirical Bayes selection procedure §% is proved to be
asymptotically optimal. The analysis shows that the rate of convergence of g}, is influenced
by the tail probabilities of the underlying distributions. It is shown that under certain reg-
ularity conditions on the moments of the prior distribution, the empirical Bayes selection
procedure §% is asymptotically optimal of order O(n=*/2) for some 0 < A < 2. A lower
bound with rate of convergence of order O(n~!) is also established for the regret Bayes
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1. Introduction

The exponential distribution has played an important role for modeling the life time
distribution of a variety of random phenomena. This distribution arises in many areas of
applications, including reliability, life-testing and survival analysis. An overall introduction
and more applications of the exponential distribution model can be seen, for example, in

the contents of Johnson, Kotz and Balakrishnan (1994) and Balakrishnan and Basu (1995).

Consider k independent exponential populations my,..., 7, with associated popula-
tion means 6;,z = 1,...,k, respectively. The 6;s are unknown. Let 8y be a specified
standard. Population 7; is said to be good if 8; > 6y, and bad otherwise. In many prac-
tical situations, an experimenter is often confronted with the problem of comparing the
k alternatives with the specified standard 6y, and selecting the more promising subset of
the k populations for further experimentation. The problem is known as comparison with
a control problem. A review of subset selection procedures in this context is contained in

Gupta and Panchapakesan (1985).

Now, consider a situation in which one is repeatedly dealing with the same selection
problem independently. In such instances, it is reasonable to formulate the component
problem in the sequence as a Bayes decision problem with respect to an unknown prior
distribution on the parameter space. One then draws useful information from the accu-
mulated historical data to improve the decision at each stage. This is the empirical Bayes
approach due to Robbins (1956, 1964). Empirical Bayes procedures have been derived
for subset selection goals by Deely (1965). Recently, Gupta and Liang (1988, 1994) and
Gupta, Liang and Rau (1994a, 1994b) have studied certain selection problems using the
empirical Bayes approach. Many such empirical Bayes procedures have been shown to be
asymptotically optimal in the sense that the Bayes risk for the (n+1)— st decision problem
converges to the optimal Bayes risk which would have been obtained if the prior distri-
butions were fully known and the Bayes procedure with respect to this prior distribution

were used.

In this paper, we are dealing with the problem of selecting good exponential popu-
lations compared with a control using the empirical Bayes approach. In Section 2, the

selection problem is formulated and a Bayes selection procedure is derived. In Section




3, an empirical Bayes selection procedure §}, is constructed by mimicking the behavior of
the Bayes selection procedure. The asymptotic optimality of the empirical Bayes selection
procedure is established in Section 4. The associated rate of convergence of the regret
Bayes risk of ¢} is also investigated. The analysis shows that the rate of convergence
is influenced by the tail probabilities of the underlying distributions. It is shown that
under certain regularity conditions about the moments of the prior distribution, the em-
pirical Bayes selection procedure §} is asymptotically optimal of order O(n~*/2) for some
0 < A < 2. A lower bound with rate of convergence of order O(n™1!) is also established for
the regret Bayes risk of the empirical Bayes selection procedure §%. This result suggests
that a rate of order O(n~!) might be the best possible rate of convergence for the empirical

Bayes selection problem.

2. Formulation of the Selection Problem

Consider k independent exponential populations 7y, ..., 7, with probability density
function hi(z;|6;) = elie"‘/o*',mi > 0,8; > 0, respectively. The éis,7 = 1,...,k, are
unknown. For a specified standard 6, > 0, population =; is said to be good if §; > 6, and
bad otherwise. The selection goal is to select all good populations and to exclude all bad

populations.

Let @ = {8 = (61,...,0k)|6; > 0,2 = 1,...,k} be the parameter space and let
A= {a=(a1,...,ak)|lai = 0,1;4 = 1,...,k} be the action space. When an action q is
taken, it means that population 7; is selected as good if a; = 1, and excluded as bad if

a; = 0. For parameter § and action g, the loss function L(§, a) is defined as:

k
Lga)=) #bia) (2.1)

where

£(6;,a;) = a;0:(6y — 6:)I(6o > 6;) + (1 — a;)0:(6; — 60)I(6; > 6p) (2.2)

and I(A) is the indicator function of the event A.

Foreach: =1,...,k, let X;;,... X;m be a sample of size m arising from population ;
m

with probability density hi(z|6;). Let Y; = > X;;. Then Y; follows a gamma distribution
i=1

with probability density fi(y|6:) = T—(Lg-;@%,-e‘y/ % Note that Y; is a sufficient statistic




for the parameter §;. Since the Bayes and empirical Bayes approaches will be employed,
it suffices to deal with the sufficient statistics Yi,...,Y%. It is assumed that for each
1 =1,...,k, the parameter 8; is a realization of a random parameter ©; with an unknown
prior distribution on G; on 8; over (0,00), and ©4,...,0; are mutually independent. It
is also assumed that G;,i = 1,...,k, are non-degenerate and satisfy that [ 62dG;(f) < co

to insure the Bayes risk to be finite and this selection problem to be meaningful. We let
k
G(8) = I_Il Gi(6:).

Let Y = (Y1,...,Y:) and Y denote the sample space of Y. A selection procedure
§ = (61,...,6r) is defined to be a measurable mapping from the sample space ) into
the product space [0,1]%, so that for each ye), §(y) = (61(y),---,0k(y)) and 6;(y) is the
probability of selecting population 7; as good. Let C be the class of all selection procedures.
For each §¢C, let R(G,§) denote its associated Bayes risk. Then, R(G) = 1nf R(G,9) is the
minimum Bayes risk among the class C. A selection procedure d¢g satlsfgrlng R(G,éqg) =
R(G) is called a Bayes selection procedure. Note that R(G) < co under the assumption
that [62dGi(f) < oco,i=1,...,k.

Let c(6) = (T(m)6™) ™", u(y) = y™*. Then fi(yl8:) = c(8:)u(y)e /% Let f(ylf) =
f[l fi(yi|;). Also, for each : =1,...,k,y > 0 and nonnegative integer a, define
balv) = [ 80 dG(6) (2.9
Then, fi(y) = [ fi(y|0)dGi() = u(y)¢;(y) is the marginal probability density of Y;. Let
) = 1 At
From the preceding statistical model and the loss function L(§,a), the Bayes risk

associated with the selection procedure § is:

R(G,5) = zk: Ri(G, ) (2.4)
and L =
R(6.6)= [ (T A0l vt - (w0 du +
o (2.5)
= [ T Ao Mutunapsn e = ws(u0)] du + .




where C; = [, 6:(8; — 60)I(6; > 60)dG(§) which is independent of the selection procedure

Ao — Yi2(yi)

5, and () = 323,
Let Hi(yi) = Ootir(vi) — $ia(yi) = ¥ir(yi)[fo — @i(yi)]- Note that 1ir(y:) > 0. From
(2.5), a Bayes selection procedure §g = (8c1,-.-,0ck) can be obtained as follows:  For

each yeYand ¢t =1,...,k,

1 i Hi(y) <0,
5Gi(y)={ (vi)

0 otherwise,

{1 if  @i(yi) 2 bo, (2.6)

0 otherwise.

Note that for each component i,g; depends on y only through y;. Therefore dai(y)

can be written as 6g;(y;). The minimum Bayes risk is

k
R(G,6c) =) Ri(G,bci) | (2.7)

i=1

and

Ri(G, 86:) = / w(y)66i(y)bis (¥)[80 — @:i(w))dy + Cs

- (2.8)
- / w(y)bi(y)Hi(y)dy + Cs.

=0
fo%(e)e-””m;w)
f9c(9)e‘?/9dG;(€)
prior distribution G; is non-degenerate. We assume

is continuous and strictly increasing in y since the

Note that ¢i(y) =

Assumption A lin%) wi(y) < 6o < lim @i(y),e =1,...,k.
y— y—oo

Under Assumption A, for each ¢ = 1,...,k, there exists a unique value a; = ai(6o)
such that ¢;(a;) = bo,0i(y) < 8 i y <ai wi(y) >0 if y>ai Hence, the Bayes
selection procedure §G = (6g1,...,0ck) can be represented as: For eachi=1,...,k and

y>0

bci(y) = { bt yza (2.9)

0 otherwise.

)




Finally, for each : = 1,...,k, let dG}(8) = 94Gi(8) ' where m1(G:) = [ 6dGi(6). Then,

my(Gi)?
G? is also a distribution on 8; over (0,00). Define
£ = [ FOI9)IG®) = uwpbaw)/m (G (210)

Then, ¢i(y) = %'f—g% = Eg: [©;]Y; = y] : the “posterior mean” of ©; given Y; =y and G}

is the prior distribution of ©;. Hence, R;(G, ég:) can be represented as:

o0

Ri(G,bgi) = / m1(Gi)f (y)8ci(y)[6o — wi(y)ldy + Ci. (2.11)

y=0
Note that the Bayes selection procedure §¢ depends on the prior distribution G. Since
G is unknown, it is not possible to implement the Bayes selection procedure §g for the

selection problem at hand. In the following, the empirical Bayes approach is employed.
3. Construction of An Empirical Bayes Selection Procedure

3.1 Empirical Bayes Framework
The empirical Bayes framework of the selection problem is given as follows.

For each 7 = 1,...,k, at stage ¢, let (Yi¢,©i¢) denote a pair of random vector so
that ¥, is observable, but ©;¢ is not observable. Also, given ©; = 8,7}, follows as
a gamma distribution with probability density fi(y|fi¢) and ©;, has a prior distribution
G;. It is assumed that (Yi,©i),t = 1,...,k;£ = 1,2,.... are mutually independent.
At the present stage n + 1, we let Y;(n) = (Yi1,...,Yin) denote the historical data and
Y; = Y; n41 the present random observation associated with population m;,7 = 1,...,k.

Let Y(n) = (Y1(n),...,Yx(n)) and ¥ = (¥3,...,Y%). At the present stage n + 1, we con-

sider the problem of selecting all good from among (61,n+1, - - -, 0k, n+1) compared with the
standard value @y using the loss function L(8,+1,a), where 8nt1 = (01,0415, 0k,n+1)-
At stage n + 1, an empirical Bayes selection procedure, say §» = (n1,...,0nk), is 2

measurable function defined on the sample space of ¥ X Y (n), into the product space

[0,1]%, so that 8a(y,¥(n)) = (6n1(y, Y (n)),---,8nk(y, Y (n)) = (Snr(y)s-- -, bnr(y)) =
§n(y)andbni(y, Y (n)) = 6,i(y) is the probability of selecting m; as good.

Let R(G,6,|Y(n)) denote the conditional Bayes risk of the empirical Bayes selection
procedure §, conditioning on Y (n), and let R(G, §,) denote the overall Bayes risk of the

selection procedure §,. Then,




R(G, 6.[¥(n) =; Ri(G, 61]¥ (n))

(3.1)
Ri(G, 8i|Y (n))

I

o T £ oos ) i)y +

i

and

RG,5.) =3 Ri(G,bm)

=1

. (32)
Ri(G,bni) =Jy []I:Il fj(y,-)] u(Yi) By () [8ni (W) Hi(y: )dy + Ci

where the expectation Ey- () is taken with respect to the probability measure generated
by ¥(n).
Since §¢ is the Bayes selection procedure, Ri(G, 5m-|Y(n)) — Ri(G,bgi) = 0 for all
Y(n),n and eachi =1,...,k. Thus R(G,6)—R(G,éc) = Z[R (G, 6ni)—Ri(G,66i)] 20
for all n. This nonnegative regret Bayes risk D(G, §,) = R(G 8n) — R(G,8¢) is used as a

measure of performance of the empirical Bayes selection procedure §5,.

Definition 3.1. A sequence of empirical Bayes selection procedures {§,}52; is said to
be asymptotically optimal relative to the prior distribution G if R(G,é») — R(G,dc) =
o(1). {6.}, is said to be asymptotically optimal of order {an}32, relative to the prior
distribution G if R(G,§,) — R(G,§c) = O(a,) where {a,}32, is a sequence of positive

numbers such that lim a, =0.
n—o0

3.2. The Proposed Empirical Bayes Selection Procedure

We construct an empirical Bayes selection procedure by mimicking the behavior of

the Bayes selection procedure g of (2.6).

Note that the functions ¥i,(y),a =1, 2, can be written as:
Ya(y) = [iZ, vi(t)dt,
{ Yi2(y) = fto.:y tio(t)dt — yir (y)-
Foreachi=1,...,k,£=1,2,...,and y > 0, define

(3.3)

7




Vie(y) = I(Yie 2 y)/u(Yie). (3.4)

i

; Then, By (o[Vie(y)] = via(y), By, [(Yie = y)Vie(y)] = ia(y)-Thus, for Wie(y) = (6o +

‘ y — Yie)Vie(v), Elf(n)[Wif(y)] = 0pvi1(y) — ¥i2(y) = Hi(y). Now, foreacht=1,...,k, and
y > 0, define

Hin(y) = ;1;2 Wi(y) (3.5)
£=1

H;n(y) is an unbiased and consistent estimator of H;(y). By mimicking the form (2.6), we
propose an empirical Bayes selection procedure ¢}, = (654,...,0%,) as follows: For each

t=1,...,k,and y; > 0,

. 1 if Hin(yi) <0,
5ni(yi) = { (36)
0 otherwise.

The Bayes risk of the empirical Bayes selection procedure §}, is:

k
R(G,63) =) Ri(G,8),
i=1

o0

R(G,5) = [ u(y) By ln)Ei(w)iy + G 6

y=0
= /_: WY)EY (o [62: ()] (¥)[60 — wi(y)ldy + Ci.

4. Asymptotic Optimality and Rate of Convergence
4.1. Asymptotic Optimality of ¢}

From (2.8) and (3.7), the regret Bayes risk of the selection procedure §}, is:

k
R(G,8) - R(G,86) = Y [Ri(G,6};) — Ri(G, 66i)] (4.1)

=1
and from (2.9), for each i =1,...,k.
R(G,6,;) — Ri(G,bai)

- / T w0 — i) By (n52u(y) — Sai(w)ldy

= / " ula W) — pWIP(E() = L doi(y) = O}dy -

=0

+ [ @) - GIP(EG) = 0,bai(y) = Dd.

=a"




Note that under the assumption that [ 6?dG;(f) < oo, we have

[ swwatito - eituiy
< /0 " Bouly)vii(y)dy + /0 " w(y )i (y)ei(y)dy

=6, / 8dG;(6) + / 82dG;(6) < oo.

Therefore, to establish the asymptotic optimality of the selection procedure §7,, it suffices
to show that for each ¢: = 1,...,k, P{6%,(y) = 1,6ci(y) = 0} — 0 as n — co for each
0 <y < a;, and P{8%,(y) = 0,6gi(y) =1} — 0 as n — oo for each y > a;.

In either case, for e = 0,1, by (2.6), (3.6) and the definition of Hin(y),
P{é,:(y) = &,6ci(y) =1 — €}

<P{|Hin(y) — Hi(y)| > |Hi(y)|}

<E¥(n)lﬂin(y)—Hi(y)l2 o1
- [Hi(y)]?  n[Hi(y))?

which tends to 0 as n — oo if Var(Wi(y)) is finite.

Var(Wie(y)),

Note that Wis(y) = (60 + y — Yie)I(Yie > y)/YiT'—l. If m > 2,W;(y) is a bounded
random variable, and therefore, Var(Wi,(y)) < co. I m = 1,Vie(y) = I(Yie > y) and
Var(Wir(y)) < 2(80 + y)*Var(Vie(y)) + 2Var(YieVie(y)) < oo since Var(Vie(y)) < 1 and
Var(YieVie(y)) < E[Vj] = E E[Yj}|0:] = E[207] < co.

We summarize the result of the preceding discussion as a theorem as follows:

Theorem 4.1 Let §* be the empirical Bayes selection procedure constructed in Section
3. Suppose that [62dG;(8) < oo for each i = 1,...,k. Then, §}, is asymptotically optimal
in the sense that R(G, %) — R(G,éc) = o(1).

4.2. Rate of Convergence

In this subsection, we investigate the rate of convergence of the empirical Bayes se-
lection procedure §* by establishing an upper bound on the regret Bayes risk R;(G, 6;;) —

'y Yni

Ri(G,é¢:) for each ¢ = 1,...,k. In the following, we consider the case where m > 2.

9




Therefore, W;(y) is a bounded random variable, with
Var(Wie(y)) < EWie(y))?

< /00 (t;yﬂd)io(t)dt

u(®)
4.3
u(y) / (t —Yy- 90) d)zo(t) ( )
sl () + 260
From (4.2) and by the definitions of §% and dq,
Ri(G7 621) - Ri(Ga 5Gi)
ai/2
= [ wwwawlts - e @IPH(w) ~ Biy) < ~Hiw)}dy
v @l — e IPinly) = Hiy) S ~Hil0)}do
a;+1
+ [T uba i) - P Hinly) = Hily) 2 ~Hilu)}dy
# [ ua)ipis) - BIPEiy) ~ Hily) 2 ~Hi)}dy
= D1 + Dis + Dis + Dis(say).
) (4.4)

Note that for each ye[%,a;],0 < Hi(y) = bovbir(y) — ¥i2(y) < bovir(y) < bovar (%)
since ¥;1(y) is decreasing in y for y > 0, and Wis(y),£ = 1,2...,n, are iid, bounded

random variables with

[Wie(y)| = (6o +y—Yi)[(Yie 2 y) | _ boI(Yie 2y) | (Yie = y)I(Vie > y)
o v } YJE“ Yy
6o 1
<& e
(Gt (g)m

So, there exists a number, say Qi(6y) > 0, such that |[Wi(y) — Hi(y)| < ..—Q"(29°) for
all y €[a;/2,a;]. Hence, by Hoeffding’s inequality and the definition of H;n(y), for each

Y 6[(1,‘/2,61.,‘],

P{Hin(y) - Hi(y) < —Hi(y)} < exp {_._.___‘2”H? (v) }

Q%(6o)

- =2n9? (y)[0o — wi(y)] (4.5)
- P{ Q2 (6y) }

< exp{—nbi[fo — ¢i(¥)]*},

10




where b; = 2¢?1(%i)/@?(90)'

Let ¢; = u(ai)i(%). Then 0 < u(y)pu(y) < u(ai)ii(5) = ¢ for all ye[%, ai].
Next for each ye[4, a;], since G; is non-degenerate.
—d d yaly)

@[90 —i(y)] = dy ¥ir(y)

_ [62c(6)e=v/9dG(8) - [ c(6)e=¥/?dGi(6) — ([ 8c(B)e™/° dGi(8))?
= [ 0c(8)e=v77dG+(6)

_ Ya(y)¥io(y) — (i1 (y)]?
[i1(y)]?

> di(a,-) > 0.

Therefore, combining the preceding inequalities and replacing them into D;s,

we obtain

Diz < / " cilbo — i(y)] exp{—nbilfo — wi(y)}dy

if2
% cil=2nbi(fo — wi(y))(0o — 2i(y))'] 2
= —nb;{6p — ¢; d
/a.-/z —2nbi(6o — i(y))* xpi=nbildh — oiu)l"Jy
“ ci[=2nbi(fo — vi(y))(8o — @i(y))'] 2
< exp(—nb;[fo — wi(y)]")dy.
ai/2 2nb;di(a:) (=nblfo = 2iw)F) (4.6)
o RPN
= Smbidia)) exp(—nbi[fo — @i(y)]") -
ci
2nb;d;(a;)
= 0(n™1),
where (60 — i) = 2[00 — ¢i(¥)]-
Following an analogous argument, we obtain
Di3 = O(n_l). (47)

11




Next, for 0 < y < a;/2, by Markov’s inequality,
E[Hin(y) — Hi(y)”
[Hi(y)]?
_ Var(Wiu(y))
n|Hi(y)?

< 83i1(y) + 2¢is(y)
n|Hi(y)|*u(y)

P{Hin(y) — Hi(y) < —Hi(y)} <

where the last inequality follows from (4.3).

Also, for ye(0, %],00 — wi(y) > 6o — @i(%) > 0. Therefore,

D </ai/2 1 (051 (y) + 2i3(y)]dy
= nlfo — i) (y) = ° (45)

ul 6 i/ 2 $is(y)
—————d . dy.
S/o nfo — i (50 +/o nfbo — w50 bay)

Here, we note that since m > 2,
0 < ia(y) = [ Pe(6)e"/*4G:(6)

= / 1 6 c(8)e=Y/? dG(8) + / ~ 63c(8)e=¥/% dG;(6)
@ 1

=0

1 oo 92
(@)=Y dC. v/ ;
< /0 fc(6) dG:(6) + /1 T(m) dGi(0)

<o,
and % is increasing in y for y > 0. Hence, foc ﬁ:‘:‘g; dy < oo for every ¢ > 0. Combining

these results into (4.8), we obtain:
Dy =0(n™h). (4.9)

For y > a; + 1, by Markov’s inequality, for 0 < A < 2,

E[|Hin(y) - Hi()N]

P{Hin(y) — Hi(y) 2 —Hi(y)} < Hi(g)[™

12




Therefore,

Dit < / °: ) Hi() = El|Hinly) — Hi(y)"ldy

< t w() Hi)| N Hiny) — H(w)IP]M2dy (4.10)

oo Hz- 1-X
- / u(y)| AS?' Var/? (Wi (y))dy.
a;+1 n

So far, the rates of order O(n™!) regarding the three terms D;;, Di; andD;3 are obtained
only based on the conditions that [ 6>dG;(f) < co and Assumption A holds. Therefore D4
is an essential part for the rate of convergence of R;(G,8%;) — Ri(G,égi). We summarize

the preceding result as a theorem as follows.

Theorem 4.2. Suppose that Assumption A holds, [6?dG;(f) < oo for each i =
1,2,...,kand [ u(y)|Hi(y)|!~*Var**(Wii(y))dy < 00,i =1,..., k. Then, Ri(G, &};)—
Ri(G,éc;) = O(n™*/%) for each i = 1,...,k, and the empirical Bayes selection proce-
dure §* is asymptotically optimal of order O(n~*/2) for some 0 < A < 2. That is,

R(G,8;) - R(G,8¢) = O(n™*/?).

To see how the asymptotic behavior of D4 is influenced by the tail probability of the
probability density f;(y), we introduce the following lemma.

Lemma 4.1 Let X be a nonnegative random variable with probability density function
h(z). Thenfor 0 <t < 1land p> 1, [ hi(z)dz < (pt — 1) ER[XPO-9)).

13




Proof: Note that g(z) = (pt — 1)z~ P! is a probability density on (1,00). Now,

/°° hi(z)dz =pt1— 1 /loo(pt — 1)z 7P zPh(z)] dz

1

=}ﬁE‘1[Xph(X)]t where E, is taken wrt ¢(x)

< ! 1(Eq [XPh(X)])! by Holder inequality

pt

=Bt_}—_1( /1 ot - l)x"’tmph(x)da:> t
=(pt — 1)'7( /1 N 2P p(z)dz)!

<(pt — 1) ERXPO))S

a

For y > a; + 1,0:(y) — 60 = @i(ai + 1) — 6y = e; > 0. Also, note that u(yin(y) =

m1(G:)f*(y) where f¥*(y) is a probability density defined in (2.10). Hence, by (4.3),

/ t W) Hi(y) P Va2 (Wa(y))dy.

) u 1-A
S/ +1 |99i((??J/))¢:'190T’?{31 * uk/i(y) (051 (y) + 2t (y)]* dy

% ylmA/2 1-2
S/am 1 g)‘fl W) (26211 (4)/2 + (40 (1) 21y

22203

=T / :1 [u(y)di (y)]* 2 dy

1

A .
e Sl ) (R P dy

14




2A/2 42 G; 1-X/2 i
-2 Am ) £ )y
i ai+1
2\ (1 (G;))1—2 o bis(y) A/2
A I(A ) My ){ 3E )] dy
€; a;i+1 [

By Lemma 4.1,

f*l A/2(y)dy</ f*l A/2(y)dy

a;+1

<(p(L = A/2) = 1)™N?2 (Ep [YP)-V2,

1 2
forp > X3 = 7o% and where

E(G, 1) [0:YP?]
m1(G;)

Ep (Y] =
_Eg,[0:E5 Y104
my(Gi)

_I‘(m + pA/2)
 I(m)my(G:)

EG~ [®p/\/2+1] .
Therefore,

LT

<(p(1 = M/2) 1) x LI PR ioare o (g (@22 -2,

I'(m)mi1(G;)

- . . A
Also, by Holder inequality, for s > 1 such that As <2 and § x ;237 > 1,

/0; Py )[zzsgg]*” &y

=y [0 2 0 [ 220

<[Ep SO > ai +1)] /1 x [E [%(Y)
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«p,s(Y)]z = ]

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)




where

En(ff(WIY 2 a; + 1) 72

_ * *1—Xs/2
—/a,-—i-l fi (y)dy (4.16)
_ T(m + pAs/2)]* " sA/241\71—
< - — 1)~ Re/2 (@7 1-2s/2
<(p(1 = rsf2) ~ 172 [T g @
1 2
As T 2-)s°

Since ¢"3(y) Eg:[03Y; = y] and 3 X

Yirly) >1

8=
-3

Pia(y) %7 S
By | «mm] —Ey; [Ee; O3IY]]

<Eg EG"{ T |Y:] (4.17)

=Egs [95—:—‘ ]

=Eq,[07 7] /mi(Gy).

LY As . .
For the two moments Eg,[©,? +1] and Eg,[0; -t ] with parameters p,s and A such

that1<)\<2, s>1,A8 <2, 2(8 1)>1and1)> ) = 5= ,\,theywﬂlbeequallfwe
2

A
let 2= = which implies that p = —2-. Also,p= -2; > 25 = 1 <s< 1—_*_—;\—.

31’

We summarize the results of the preceding discussion as a Corollary of Theorem 4.2

as follows.

Corollary 4.1. Suppose that Assumption A holdsand foreachi =1,...,k, [ GTA—’THdGi(G) <
oo for some 1 < A < 2,8 > 1, such that As < 2, 2(3 1) >lands < A+1 Then,

(a) f:_o_'_l u(y)|Hi(y)|*~> Var M Wi (y))dy < oo for each i =1,...,k.
(b) The empirical Bayes selection procedure §}, is asymptotically optimal of order O(n=*/?).
5. A Lower Bound for R(G, §%) — R(G,c) and the Best Possible Rate of Con-
vergence

In this section, we will establish a lower bound with its rate of convergence for the
regret Bayes risk R(G,§%) — R(G,§g). In fact, it suffices to consider a lower bound, say,
for Ri(G,8%,) — Ri(G, ég:) since R(G,8%) — R(G,8c) > Ri(G, 6;;) — Ri(G, bgi)-

16




Theorem 5.1. Let Assumption A hold. Then,
Ri(G,6%)) — Ri(G,éc:i) = O(n™h).
Proof: From (4.4)
Ri(G,67;) - Ri(G, bc:)

2 /_ u(y)ir (y)[0o — wi(y)|P{Hin(y) — Hi(y) £ —Hi(y)}dy.

2

(5.1)

It follows from Lemma 3, on page 47, of Lamperti (1966) that for all £ > 0, and for n
being sufficiently large,
P{Hin(y) — Hi(y) < —Hi(y)}

=P{\/E(Hin(y) — Hi(y)) < —+/nH;(y) } i
v Var (Wa(y)) = / Var (Wa(y))

o] _ P+
z p.{ 2Var<Wu(y>)}

o { _ nEAW + )0 — ¢i(y))?
B p{ 2 Var (Wi (y)) }

s exp{ - AL O )1

(5.2)

=exp{~n7i(fo — »i(y))’},
where v; = 2 iiIélil;la Var(W;1(y)) > 0 Since G; is non-degenerate under Assumption A and
(%,a]isa co:rl;:;t interval, and i3 = ¥4 (§)(1+£)/7: > 0. Let i = %Lrél;rsla‘ "(—"fp)—,:lb—‘jg)-
Then 7;2 > 0. Therefore, from (5.1) and (5.2),
Ri(G,65;) — Ri(G, b6:)

2 /a;2 u(y)va (y)[90 - cp,-(y)] exp{—n7i1(fo — Lp,-(y))2}dy

- / " u(y)pa )20 (% — ¢iy)eiy)

—n7i1(6p — vi(y))*}d
i/2 2nTiei(y) exp{ 1(60 — i(y))" }dy

|
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2 /ai o 2n7i1(60 — @i(y))i(y) exp{—n7ia (6o — vi(y))*}dy

;2 2nTi
= T2 ep{=nra(fo - i)}
2nTi y=ai/2 (5.3)

.—.2::“ [1 — exp{—n7i1(6y — pi(ai/2))*}]

=0(n™).

Therefore, the proof is complete. O

Theorem 5.1 provides a lower bound with a rate of convergence of order O(n~!) for
the regret Bayes risk R(G, ;) — R(G, dc), while Corollary 4.1 gives an upper bound with
a rate of convergence of order O(n~*/2) for the regret Bayes risk. When ) is close to 2, a
rate of convergence of order O(n™!) will be the best possible rate of convergence for the
empirical Bayes selection procedure §}. Suppose that the unknown prior distribution G is
such that G;(8*) = 1 for some 0 < 6* < 00,2 = 1,...,k, and Assumption A holds. Then
Eg,;[0f] < oo for all t > 0. Thus, the quantity A in Corollary 4.1 can be chosen to be very
close to 2. For example, if welet A=A, =2~2 In én ¢n n/én n for n > 16, then the

rate of convergence is of order O(n~! ¢n ¢n n), which is close to O(n™1).
6. Concluding Remarks

We have presented a method to construct an empirical Bayes procedures ¢}, for selecting
good exponential populations compared with a control. Through the analysis developed
in Section 4, we can see that the part D;4 plays an essential role in determining the rate
of convergence of the selection procedure §;. We have demonstrated that the rate of
convergence of 87 is influenced by the tail probability of the marginal probability densities
fi(y),t = 1,...,k, or the moments of the prior distribution G. This empirical Bayes
selection procedure §} is asymptotically optimal and achieves a rate of convergence with
order O(n~*/2),0 < X < 2, which may be close to the best possible rate of order O(n™!)
under some regularity conditions about the moments of G according to Corollary 4.1. When
the random parameters @/, are bounded and Assumption A holds, we have exhibited that

é‘*

n

it is not known whether § achieves the rate of order O(n™!) or not. Singh (1979) and

1

may achieve a rate of order O(n™ ¢n {¢n n), which is close to O(n™!). However,

18



Singh and Wei (1992) have commented that “a rate of the order O(n™!) has not been
achieved for any empirical Bayes procedures, whatever may be the component problem, in

any Lebesgue-exponential, non-exponential regular or irregular family”.
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